Yield and yield contributing characters of mungbean as affected by variety and level of phosphorus

M. T. Parvez, S. K. Paul and M. A. R. Sarkar

Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
E-mail: towhid83dj@yahoo.com

Abstract: An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during the period from October to January 2011 to study the performance of mungbean as affected by variety and level of phosphorus. The experiment comprised four varieties viz. BARI Mung-6, Binamoog-4, Binamoog-6 and Binamoog-8 and four levels of phosphorus viz. 0, 20, 40 and 60 kg P$_2$O$_5$ ha$^{-1}$, and laid out in a Randomized Complete Block Design with three replications. Results revealed that the highest plant height, highest number of branches plant$^{-1}$, number of total pods plant$^{-1}$, seeds plant$^{-1}$ and seed weight plant$^{-1}$ were obtained from BARI Mung-6. The highest plant, highest number of branches plant$^{-1}$, number of total pods plant$^{-1}$, number of mature pods plant$^{-1}$, length of pod, seed weight plant$^{-1}$, 1000-seed weight, seed yield, stover yield and harvest index were obtained when 60 kg P$_2$O$_5$ was applied. Binamoog-6 produced the highest seed yield which was as good as Binamoog-8. The second highest and the lowest seed yield were recorded from Binamoog-4 and BARI Mung-6, respectively. The highest stover yield was obtained from Binamoog-8 followed by Binamoog-4. The lowest stover yield was recorded from BARI Mung-6. The highest seed yield was recorded when phosphorus was applied at the rate of 60 kg P$_2$O$_5$ ha$^{-1}$ which was statistically identical to 40 kg P$_2$O$_5$ ha$^{-1}$. The intermediate and the lowest seed yield was obtained when phosphorus was applied at the rate of 20 kg P$_2$O$_5$ ha$^{-1}$ and control treatment, respectively. The highest stover yield was obtained when 60 kg P$_2$O$_5$ ha$^{-1}$ was applied but the lowest stover yield was recorded in control treatment (0 kg P$_2$O$_5$ ha$^{-1}$). The highest plant height, number of branches plant$^{-1}$, number of total pods plant$^{-1}$ and seeds pod$^{-1}$ were obtained from BARI Mung-6 in combination with 60 kg P$_2$O$_5$ ha$^{-1}$. The highest seed yield was obtained from Binamoog-6 when 60 kg P$_2$O$_5$ ha$^{-1}$ was applied which was as good as Binamoog-8 in combination with 60 kg P$_2$O$_5$ ha$^{-1}$ and the highest stover yield was recorded from Binamoog-8 with 60 kg P$_2$O$_5$ ha$^{-1}$. It can be concluded that mungbean variety Binamoog-6 or Binamoog-8 can be grown with higher dose of phosphorus (60 kg P$_2$O$_5$ ha$^{-1}$) for higher seed yield.

Key words: Mungbean, variety, phosphorus and seed yield

Introduction

Mungbean (Vigna radiata, L. Wilczek) is one of the most important pulse crops of Bangladesh. Mungbean is highly adapted to the agro-climatic conditions of Bangladesh. It is grown both in the 'Rabi' (winter) and 'Kharif' (summer) season in many countries of the world (Bose, 1982 and BARI, 1998). About 57462 acres of land is under its cultivation and its production is 20177 metric tons (BBS, 2009). Cultivation of pulses can improve the physical, chemical and biological properties of soil as well as increase soil fertility status through biological nitrogen fixation from the atmosphere. Besides fixing atmospheric nitrogen in soils mungbean also play an important role in agriculture. Its stem and leaves are used in preparing a concentrate feed called “Bhushi” which is rich in protein. The husks of the seeds are also used as feed for milch cow. Its roots break the plough pan of puddled rice field and go deep in search of water and nutrients. Mungbean, and other pulse like cowpea and black gram are used as green manuring crop.

The farmers of Bangladesh generally grow mungbean by one ploughing and hardly use phosphorus due to their poor socio-economic condition and lack of proper knowledge. As a result, yield becomes low. There is an ample scope for increasing the yield of mungbean with improved management practices and by using proper dose of fertilizer. Mungbean is highly responsive to phosphorus fertilizers. To fix nitrogen in soil, an adequate phosphorus supply must be satisfied for the legumes, other factors being adequate. As mungbean is a legume crop, it responds well to added phosphorus (Sarkar and Banik, 1991). Phosphorus plays a key role in plant physiological processes. It is needed for energy storage and release in the living cells. Phosphorus deficiency causes yield reduction by limiting the plant growth (Poehlman, 1991). Mungbean responds favourably to phosphorus fertilization (Chovati et al., 1993). In Bangladesh some studies have been conducted to find out the effect of phosphorus and variety separately. Research work on the combined effect of phosphorus and variety on mungbean is limited. Considering the above facts the present study was undertaken to find out the suitable variety and optimum dose of phosphorus on seed yield of mungbean.

Materials and Methods

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University (BAU), Mymensingh during the period from October to January 2011. The land topography was medium high and the soil was silty loam having pH 6.7. The experiment comprised four varieties of mungbean viz. BARI Mung-6, Binamoog-4, Binamoog-6 and Binamoog-8, and four level of phosphorus viz. 0, 20, 40 and 60 kg P$_2$O$_5$ ha$^{-1}$. The experiment was laid out in a Randomized Complete Block Design with three replications. The size of each unit plots was 10 m$^2$ (4.0 m × 2.5m). The experimental land was prepared with ploughing and laddering. Fertilizers were applied at final land preparation and laying out of the land where urea, muriate of potash, gypsum, zinc sulphate and molybdenum were applied at 30, 40, 50, 4 and 1 kg ha$^{-1}$ respectively in all plots and the specific rate of P$_2$O$_5$ were applied at specific plots. Seeds were sown in furrow on 22 October 2011 and furrows were then covered with soil. The seed rate was maintained 25-30 kg ha$^{-1}$. Line to line and plant to plant distances were 30 cm and 10 cm, respectively. The sowing depth was maintained at about 3 cm from the soil surface. Crop management practices such as weeding, thinning and plant protection measures were done as per requirement. Data on yield attributes were taken from 5 randomly selected plants plot$^{-1}$. Whole plot was harvested by hand picking of pods at different dates as per maturity of different varieties. The seeds were...
dried (at 12% moisture level), cleaned and weighed plot-wise and the weights were converted to t ha⁻¹. The collected data were compiled and analyzed statistically using the analysis of variance (ANOVA) technique with the help of computer package program MSTAT-C and the mean differences were adjudged by “Duncan’s Multiple Range Test” (Gomez and Gomez, 1984).

Results and Discussion

Effect of variety: Variety showed significant influence on plant height, number of branches plant⁻¹, number of pods plant⁻¹, length of pod, number of seeds pod⁻¹, seed weight plant⁻¹, 1000-seed weight, seed yield, stover yield and harvest index. The tallest plant (52.49 cm) was produced by BARI Mung-6 variety followed by Binamoog-6 and the shortest plant (40.54 cm) was produced by Binamoog-8. Probably the genetic make-up of the variety was responsible for the variation in plant height. Similar results were reported elsewhere (Saharia 1988; Thakuria and Saharia 1990). The highest number of branches plant⁻¹ (2.96) was produced by BARI Mung-6 variety followed by Binamoog-6 while the lowest one was (2.36) recorded from Binamoog-4. BARI Mung-6 produced the highest number of total pods plant⁻¹ followed by Binamoog-6 whereas, the lowest number of total pods plant⁻¹ was produced by Binamoog-4. BARI Mung-6 (17.98) produced the highest number of mature pods plant⁻¹ followed by Binamoog-6 whereas the lowest on (12.20) was Binamoog-4. The highest length of pod (10.43 cm) was found from Binamoog-6 followed by Binamoog-8 (10.39) and the lowest length of pod (6.80 cm) was found in BARI Mung-6 (Table 1). BARI Mung-6 produced the highest seed weight plant⁻¹ (29.88 g) followed by Binamoog-6 which was identical to Binamoog-8 whereas the lowest one (14.74 g) was produced by Binamoog-4 (Table 1). The highest number of seeds pod⁻¹ (18.42) was produced by Binamoog-6 followed by Binamoog-8 (17.16) whereas the lowest number of seeds pod⁻¹ (15.47) was Binamoog-4 (Table 1). The highest weight of 1000-seed (39.57 g) was produced by Binamoog-8 followed by Binamoog-6 which was as good as Binamoog-4 whereas, the lowest weight of 1000 seeds (27.36 g) was produced by BARI Mung-6 (Table 1). The highest seed yield (1.94 t ha⁻¹) was produced by Binamoog-6 which was statistically identical to Binamoog-8 (1.88 t ha⁻¹), and the lowest seed yield (1.01 t ha⁻¹) was produced by BARI Mung-6 (Table 1). The highest stover yield (4.15 t ha⁻¹) was produced by Binamoog-8 whereas the lowest stover yield (3.65 t ha⁻¹) was produced by BARI Mung-6 (Table 1). The highest harvest index (34.52%) was recorded in Binamoog-6 variety whereas the lowest harvest index (21.57%) was recorded in BARI Mung-6 (Table 1). Varietal potentiality of mungbean might be influences various plant characters, yield contributing characters and yield of mungbean. The supported results were reported elsewhere (BINA, 1998; Mohanty et al., 1995 and Mitra et al., 1999).

Table 1. Effect of variety on the yield contributing characters and yield of mungbean

<table>
<thead>
<tr>
<th>Variety</th>
<th>Plant height (cm)</th>
<th>No. of branches plant⁻¹</th>
<th>No. of total pods plant⁻¹</th>
<th>Mature pods plant⁻¹</th>
<th>Length of pod (cm)</th>
<th>Number of seeds pod⁻¹</th>
<th>Seed weight plant⁻¹ (g)</th>
<th>1000-seed weight (g)</th>
<th>Seed yield (t ha⁻¹)</th>
<th>Stover yield (t ha⁻¹)</th>
<th>Harvest Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₁</td>
<td>52.49a</td>
<td>2.97a</td>
<td>23.62a</td>
<td>17.98a</td>
<td>6.80c</td>
<td>18.42a</td>
<td>29.88a</td>
<td>27.36c</td>
<td>1.01c</td>
<td>3.65b</td>
<td>21.57d</td>
</tr>
<tr>
<td>V₂</td>
<td>40.97bc</td>
<td>2.36d</td>
<td>19.62c</td>
<td>12.20c</td>
<td>9.95b</td>
<td>15.47d</td>
<td>14.74c</td>
<td>37.56b</td>
<td>1.78b</td>
<td>3.71b</td>
<td>32.41b</td>
</tr>
<tr>
<td>V₃</td>
<td>43.05b</td>
<td>2.65b</td>
<td>20.68b</td>
<td>13.79b</td>
<td>10.43a</td>
<td>16.31c</td>
<td>19.51b</td>
<td>37.96b</td>
<td>1.94a</td>
<td>3.67b</td>
<td>34.52a</td>
</tr>
<tr>
<td>V₄</td>
<td>40.54c</td>
<td>2.45c</td>
<td>20.39c</td>
<td>12.10c</td>
<td>10.39a</td>
<td>14.74c</td>
<td>17.16b</td>
<td>39.57a</td>
<td>1.88a</td>
<td>4.15a</td>
<td>31.20c</td>
</tr>
<tr>
<td>CV (%)</td>
<td>5.77</td>
<td>3.58</td>
<td>4.47</td>
<td>7.07</td>
<td>2.82</td>
<td>2.30</td>
<td>15.68</td>
<td>3.12</td>
<td>2.82</td>
<td>4.13</td>
<td>3.53</td>
</tr>
<tr>
<td>Level of sig.</td>
<td>**</td>
</tr>
</tbody>
</table>

Mean values in a column having the same letter do not differ significantly whereas mean unless with dissimilar letter differ significantly as per DMRT, **

Effect of phosphorus: Plant height, number of branches plant⁻¹, number of pods plant⁻¹, length of pod, number of seeds pod⁻¹, seed weight plant⁻¹, 1000-seed weight, seed yield, stover yield and harvest index were significantly influenced by application of level of phosphorus. The tallest plant (46.62 cm) was recorded when phosphorus was applied at the rate of 60 kg P₂O₅ ha⁻¹ followed by 40 kg P₂O₅ ha⁻¹ at treated plots and the shortest plant (42.42 cm) was recorded from control plots (Table 2). This result is in agreement with the findings of Shukla and Dixit (1996) and Sharma and Singh (1997). They reported that phosphorus application of phosphorus enhance the plant height significantly.

The highest number of branches plant⁻¹ (2.98) was recorded when phosphorus was applied at the rate of 60 kg P₂O₅ ha⁻¹ treatment and the lowest one was recorded in control treatment. The highest number of mature pods plant⁻¹ (16.17) was recorded when 60 kg P₂O₅ ha⁻¹ applied followed by 40 kg P₂O₅ ha⁻¹ and the lowest mature pods plant⁻¹ (13.54) was recorded from application of 20 kg P₂O₅ ha⁻¹. These results are in agreement with the result of Reddy et al. (1990). They reported that phosphorus fertilization on mungbean increased number of pods plant⁻¹. Tank et al. (1992) found that mungbean fertilized with P₂O₅ could be assigned to significantly higher number of pods plant⁻¹ over the unfertilized control. The highest length of pod (10.14 cm) which was recorded when phosphorus was applied at the rate of 60 kg P₂O₅ ha⁻¹ followed by applied 40 kg P₂O₅ ha⁻¹ and the lowest length of pod (8.50 cm) was recorded from control treatment (Table 2). Similar results were reported by Khatun et al. (2008) and Tank et al. (1992). They observed that pod length in mungbean increased due to application of higher level of phosphorus. The highest weight of seeds plant⁻¹ was
The highest number of seeds pod⁻¹ (17.63) was recorded when applied 60 kg P₂O₅ ha⁻¹ which was statistically identical to application of 40 kg P₂O₅ ha⁻¹ and 20 kg P₂O₅ ha⁻¹ and the lowest one (14.89) was recorded from control treatment (Table 2). Similar result was reported by Gopala Rao et al. (1993). Their study supported that number of seeds pod⁻¹ significantly increased with the increased phosphorus level from 0 to 50 kg P₂O₅ ha⁻¹. The highest weight of 1000-seed (39.99) was recorded from 60 kg P₂O₅ ha⁻¹ which was identical to (37.09) 40 kg P₂O₅ ha⁻¹ and the lowest one (32.67) was recorded from control treatment (Table 2). Bali et al. (1991) reported that 1000-seed weight increased up to 60 kg P₂O₅ ha⁻¹.

The highest seed yield (1.87 t ha⁻¹) was produced by application of 60 kg P₂O₅ ha⁻¹ which is as good as to 40 kg P₂O₅ ha⁻¹ (1.82 t ha⁻¹) and the lowest one (1.34 t ha⁻¹) was produced when phosphorus was not applied (Table 2). The result revealed that application of phosphorus increased the seed yield over control. Ahmed et al. (1986) reported that application up to 60 kg P₂O₅ ha⁻¹ progressively and significantly enhanced the seed yield of mungbean. The highest stover yield (4.28 t ha⁻¹) was also recorded from application of 60 kg P₂O₅ ha⁻¹ followed by 40 kg P₂O₅ ha⁻¹ and the lowest stover yield (3.25 t ha⁻¹) was recovered from control treatment (Table 2). Similar result was reported by Sharma et al. (1993) and Sharma and Singh (1997). The highest harvest index (30.89%) was recorded in phosphorus was applied at the rate of 40 kg P₂O₅ ha⁻¹ and the lowest harvest index (28.80%) was found phosphorus was not applied in plots (Table 2). Tomar et al. (1996) reported that harvest index of summer mungbean were the highest with 60 kg P₂O₅ ha⁻¹.

Interaction effect of variety and phosphorus: The interaction effect was significant on different plant characters, yield and yield contributing characters of mungbean. The highest plant height (59.06 cm) was recorded from the interaction of BARI Mung-6 with application of phosphorus at the rate of 60 kg P₂O₅ ha⁻¹. The lowest plant height (35.73 cm) was observed in Binamoog-8 with control treatment (0 kg P₂O₅ ha⁻¹). The highest number of branches plant⁻¹ (3.63) was obtained from the interaction of BARI Mung-6 with phosphorus at the rate of 60 kg P₂O₅ ha⁻¹.
treatment (Table 3). The longest pods (11.05cm) was recorded Binamoog-6 with application 60 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} and the shortest pod (5.11cm) was found from BARI Mung-6 without phosphorus application (Table 3). The highest weight of seeds plant\textsuperscript{-1} (33.9 g) was recorded from BARI Mung-6 with 60 kg ha\textsuperscript{-1} phosphorus treatment and the lowest one (10.01 g) was recorded from Binamoog-4 with under control treatment (Table 3).

The highest number of seeds pod\textsuperscript{-1} (20.07) was recorded in the interaction of BARI Mung-6 with 20 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} whereas, the lowest number of seeds pod\textsuperscript{-1} (14.12) was recorded from Binamoog-8 with control treatment (Table 3). The highest weight of 1000- seed (24.41) was recorded from BARI Mung-6 without application of phosphorus (Table 3). The highest seed yield (2.19 t ha\textsuperscript{-1}) was recorded from Binamoog-6 without application of phosphorus (Table 3). The highest seed yield (2.19 t ha\textsuperscript{-1}) was recorded from Binamoog-8 with 60 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} whereas the lowest weight of 1000-seed (24.41) was recorded from BARI Mung-6 without application of phosphorus in plots (Table 3). The highest number of seeds pod\textsuperscript{-1} (20.07) was recorded from the interaction of Binamoog-8 with 60 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} and the lowest seed yield (3.11 t ha\textsuperscript{-1}) was recorded from BARI Mung-6 with control treatment (Table 3). The highest harvest index (36.68%) was recorded from Binamoog-6 with 40 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} whereas the lowest harvest index (20.47%) was recorded from BARI Mung-6 with 20 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} (Table 3).

From this study it can be concluded that Binamoog-6 (1.94 t ha\textsuperscript{-1}) was the highest yielding variety, which was as good as Binamoog-8 (1.88 t ha\textsuperscript{-1}) and phosphorus application at the rate of 60 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1} was the best which produced the highest seed (1.87 t ha\textsuperscript{-1}) yield. So to obtain better yield of mungbean variety Binamoog-6 or Binamoog-8 can be grown with higher rate of phosphorus (60 kg P\textsubscript{2}O\textsubscript{5} ha\textsuperscript{-1}).

References


